CURSO DE MATEMÁTICAS BÁSICAS ONLINE (ÁLGEBRA, GEOMETRÍA) |
Matemáticas: Ecuaciones. |
Buscar : |
Noticias: IoT (Internet de las cosas ) - Arduino - Mundo del Motor - Tecnología - Mundo Noticias ... |
Solución: la pregunta sería ¿cómo corroboramos que x = -1, es la solución? La respuesta es, sustituyendo la solución en la ecuación original, debemos obtener una igualdad verdadera, veamos:
NOTA: Es pertinente que se analice porque las operaciones propuestas en la resolución del problema, (subrayado con negro) con el fin de entender la lógica del método.
|
Reflexión: en todos los ejemplos propuestos, la solución se resumen en despejar la incógnita (variable). Generalizando precisamente a esto es que se centrará la solución de ecuaciones, a despejar la incógnita, lo cual se hace utilizando principios, leyes y axiomas matemáticos. ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS
En éste aparte analizaremos dos casos, el primero es cuando se tiene una ecuación de primer grado con dos incógnitas y el segundo es cuando se tienen dos ecuaciones con dos incógnitas. Ecuaciones Diofánticas: Diofanto de Alejandría, del Siglo III de nuestra era, desarrolló unas ecuaciones que trabajan sobre el conjunto de los enteros y son de primer grado con dos incógnitas, en honor a su nombre se conocen como ecuaciones diofánticas.
|
Cuando a, b y c son enteros positivos, la ecuación tiene solución entera, si y solo sí, el máximo común divisor de a y b divide a c. Este tipo de ecuaciones puede tener infinitas soluciones o no tener solución. Entonces la solución consiste en hallar ecuaciones generadoras (paramétricas) del par (x,y) que satisfagan la ecuación propuesta. |
Solución general de ecuaciones Diofánticas (método paramétrico) Para este tipo de ecuaciones, la solución es buscar ecuaciones para x y y con un parámetro, generalmente se le llama t, llamada solución general. El procedimiento para hallar esta solución no es fácil, solo deseamos que se conozca que a partir de una solución general, se pueden hallar soluciones específicas para la ecuación dada. Los curioso pueden investigar en libros de matemáticas discretas o en temas de ecuaciones diofánticas, para que profundicen en el tema.
|
Solución general de ecuaciones Diofánticas (método despeje): cómo hallar las ecuaciones paramétricas para x y y,no es tarea fácil, un método para hallar soluciones particulares a partir de una solución general, es despejando una de las variables de la ecuación y obtener otra ecuación donde se obtiene y = f (x) ó x = f (y); es decir, y en función de x ó x en función de y. |
<< Anterior - Siguiente >> |
---|
Tus Compras en Línea. Libros. Informática. Automóvil. Indumentaria ... VER PRODUCTOS >> : 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75 - 76 - 77 - 78 - 79 - 80 - 81 - 82 - 83 - 84 - 85 - 86 - 87 - 88 - 89 - 90 - 91 - 92 - 93 - 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 109 - 110 - 111 - 112 - 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 125 - 126 - 127 - 128 - 129 - 130 - 131 - 132 - 133 - 134 - 135 - 136 - 137 - 138 - 139 - 140 - 141 - 142 - 143 - 144 - 145 - 146 - 147 - 148 - 149 - 150 - 151 - 152 - 153 - 154 - 155 - 156 - 157 - 158 - 159 - 160 - 161 - 162 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 170 - 171 - 172 - 173 - 174 - 175 - 176 - 177 - 178 - 179 - 180 - 181 - 182 - 183 - 184 - 185 - 186 - 187 - 188 - 189 - 190 - 191 - 192 - 193 - 194 - 195 - 196 - 197 - 198 - 199 - 200 - 201 - 202 - 203 - 204 - |
|
Volver arriba | ![]() |