Conceptos Básicos de Neumática e Hidráulica 


Neumática e Hidráulica - www.sapiensman.com

 

 



 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

2. Producción del aire comprimido

2.1 Generadores

Para producir aire comprimido se utilizan compresores que elevan la presión del aire al valor de trabajo deseado. Los mecanismos y mandos neumáticos se alimentan desde una estación central. Entonces no es necesario calcular ni proyectar la transformación de la energía para cada uno de los consumidores. El aire comprimido viene de la estación compresora y llega a las instalaciones a través de tuberías.

Los compresores móviles se utilizan en el ramo de la construcción o en máquinas que se desplazan frecuentemente.

En el momento de la planificación es necesario prever un tamaño superior de la red, con el fin de poder alimentar aparatos neumáticos nuevos que se adquieran en el futuro. Por ello, es necesario sobredimensionar la instalación, al objeto de que el compresor no resulte más tarde insuficiente, puesto que toda ampliación ulterior en el equipo generador supone gastos muy considerables.

Es muy importante que el aire sea puro. Si es puro el generador de aire comprimido tendrá una larga duración. También debería tenerse en cuenta la aplicación correcta de los diversos tipos de compresores.

Ver: Gases neumáticos

2.2 Tipos de compresores

 

Según las exigencias referentes a la presión de trabajo y al caudal de suministro, se pueden emplear diversos tipos de construcción.

Se distinguen dos tipos básicos de compresores:

El primero trabaja según el principio de desplazamiento. La compresión se obtiene por la admisión del aire en un recinto hermético, donde se reduce luego el volumen. Se utiliza en el compresor de émbolo (oscilante o rotativo).

El otro trabaja según el principio de la dinámica de los fluidos. El aire es aspirado por un lado y comprimido como consecuencia de la aceleración de la masa (turbina).

Conceptos de NEUMÁTICA e HIDRÁULICA ,  Mas información en mapa del sitio

2.2.1 Compresores de émbolo o de pistón

Compresor de émbolo oscilante . Este es el tipo de compresor más difundido actualmente. Es apropiado para comprimir a baja, media o alta presión. Su campo de trabajo se extiende desde unos 1 .100 kPa (1 bar) a varios miles de kPa (bar).

Figura 6: Compresor de émbolo oscilante

 

Este compresor funciona en base a un mecanismo de excéntrica que controla el movimiento alternativo de los pistones en el cilindro. Cuando el pistón hace la carrera de retroceso aumenta el volumen de la cámara por lo que aumenta el volumen de la cámara, por lo que disminuye la presión interna, esto a su vez provoca la apertura de la válvula de admisión permitiendo la entrada de aire al cilindro. Una vez que el pistón ha llegado al punto muerto inferior inicia su carrera ascendente, cerrándose la válvula de aspiración y disminuyendo el volumen disponible para el aire, esta situación origina un aumento de presión que finalmente abre la válvula de descarga permitiendo la salida del aire comprimido ya sea a una segunda etapa o bien al acumulador.

Es el compresor mas difundido a nivel industrial, dada su capacidad de trabajar en cualquier rango de presión. Normalmente, se fabrican de una etapa hasta presiones de 5 bar, de dos etapas para presiones de 5 a 10 bar y para presiones mayores, 3 o mas etapas.

Algunos fabricantes ya están usando tecnología denominada libre de aceite, vale decir, sus compresores no utilizan aceite lo que los hace muy apetecibles para la industria químico farmacéutica y hospitales.

Para obtener el aire a presiones elevadas, es necesario disponer varias etapas compresoras. El aire aspirado se somete a una compresión previa por el primer émbolo, seguidamente se refrigera, para luego ser comprimido por el siguiente émbolo. El volumen de la segunda cámara de compresión es, en conformidad con la relación, más pequeño. Durante el trabajo de compresión se forma una cantidad de calor, que tiene que ser evacuada por el sistema refrigeración.

Los compresores de émbolo oscilante pueden refrigerarse por aire o por agua, y según las prescripciones de trabajo las etapas que se precisan son:

 

 

Compresor de émbolo rotativo

Consiste en un émbolo que está animado de un movimiento rotatorio. El aire es comprimido por la continua reducción del volumen en un recinto hermético.

Compresor de Diafragma (Membrana)

Este tipo forma parte del grupo de compresores de émbolo. Una membrana separa el émbolo de la cámara de trabajo; el aire no entra en contacto con las piezas móviles. Por tanto, en todo caso, el aire comprimido estará exento de aceite.

El movimiento obtenido del motor, acciona una excéntrica y por su intermedio el conjunto biela - pistón. Esta acción somete a la membrana a un vaivén de desplazamientos cortos e intermitentes que desarrolla el principio de aspiración y compresión.

Debido a que el aire no entra en contacto con elementos lubricados, el aire comprimido resulta de una mayor pureza, por lo que lo hace especialmente aplicable en industrias alimenticias, farmacéuticas , químicas y hospitales.

Compresor rotativo multicelular

Un rotor excéntrico gira en el interior de un cárter cilíndrico provisto de ranuras de entrada y de salida. Las ventajas de este compresor residen en sus dimensiones reducidas, su funcionamiento silencioso y su caudal prácticamente uniforme y sin sacudidas.

El rotor está provisto de un cierto número de aletas que se deslizan en el interior de las ranuras y forman las células con la pared del cárter. Cuando el rotor gira, las aletas son oprimidas por la fuerza centrífuga contra la pared del cárter, y debido a la excentricidad el volumen de las células varía constantemente.

Tiene la ventaja de generar grandes cantidades de aire pero con vestigios de aceite, por lo que en aquellas empresas en que no es indispensable la esterilidad presta un gran servicio, al mismo tiempo el aceite pulverizado en el aire lubrica las válvulas y elementos de control y potencia.

Compresor de tornillo helicoidal, de dos ejes

Dos tornillos helicoidales que engranan con sus perfiles cóncavo y convexo impulsan hacia el otro lado el aire aspirado axialmente. Los tornillos del tipo helicoidal engranan con sus perfiles y de ese modo se logra reducir el espacio de que dispone el aire. Esta situación genera un aumento de la presión interna del aire y además por la rotación y el sentido de las hélices es impulsado hacia el extremo opuesto.

Los ciclos se traslapan, con lo cual se logra un flujo continuo. A fin de evitar el desgaste de los tornillos, estos no se tocan entre si, ni tampoco con la carcasa, lo cual obliga a utilizar un mecanismo de transmisión externo que permita sincronizar el movimiento de ambos elementos.

Entrega caudales y presiones medios altos (600 a 40000m³/h y 25 bar) pero menos presencia de aceite que el de paletas. Ampliamente utilizado en la industria de la madera, por su limpieza y capacidad.

Fig. 11 - Compresor Roots

Compresor Roots

En estos compresores, el aire es llevado de un lado a otro sin que el volumen sea modificado. En el lado de impulsión, la estanqueidad se asegura mediante los bordes de los émbolos rotativos.

Como ventaja presenta el hecho que puede proporcionar un gran caudal, lo que lo hace especial para empresas que requieren soplar, mover gran cantidad de aire, su uso es muy limitado.

El accionamiento también se asegura exteriormente, ya que por la forma de los elementos y la acción del roce no es conveniente que los émbolos entren en contacto.

2.2.2 Turbocompresores

Trabajan según el principio de la dinámica de los fluidos, y son muy apropiados para grandes caudales. Se fabrican de tipo axial y radial. El aire se pone en circulación por medio de una o varias ruedas de turbina. Esta energía cinética se convierte en una energía elástica de compresión.

La rotación de los alabes acelera el aire en sentido axial de flujo. 

Compresor Axial

El proceso de obtener un aumento de la energía de presión a la salida del compresor se logra de la siguiente manera. La rotación acelera el fluido en el sentido axial comunicándole de esta forma una gran cantidad de energía cinética a la salida del compresor, y por la forma constructiva, se le ofrece al aire un mayor espacio de modo que obligan a una reducción de la velocidad. Esta reducción se traduce en una disminución de la energía cinética, lo que se justifica por haberse transformado en energía de presión.

Con este tipo de compresor se pueden lograr grandes caudales (200.000 a 500.000 m³/h) con flujo uniforme pero a presiones relativamente bajas (5 bar).

Aceleración progresiva de cámara a cámara en sentido radial hacia afuera; el aire en circulación regresa de nuevo al eje. Desde aquí se vuelve a acelerar hacia afuera.

Compresor Radial

En este caso, el aumento de presión del aire se obtiene utilizando el mismo principio anterior, con la diferencia de que en este caso el fluido es impulsado una o más veces en el sentido radial. Por efecto de la rotación, los álabes comunican energía cinética y lo dirigen radialmente hacia fuera, hasta encontrarse con la pared o carcasa que lo retorna al centro, cambiando su dirección. En esta parte del proceso el aire dispone de un mayor espacio disminuyendo por tanto la velocidad y la energía cinética, lo que se traduce en la transformación de presión. Este proceso se realiza tres veces en el caso de la figura, por lo cual el compresor es de tres etapas. Se logran grandes caudales pero a presiones también bajas. El flujo obtenido es uniforme.

 

 

Compresores , mas información aquí .

SISTEMA INTERNACIONAL DE UNIDADES DIAGRAMA DE TRABAJO DE UN COMPRESOR DE PISTÓN RENDIMIENTO DE LOS COMPRESORES COMPRESORES DE AIRE A PISTÓN COMPRESORES MONOFÁSICOS COMPRESORES BIFÁSICOS COMPRESORES DE DOS ETAPAS SIMPLE EFECTO . COMPRESORES DE DOS ETAPAS DOBLE EFECTO  DISPOSICIÓN DE LOS CILINDROS TABLA DE CARACTERÍSTICAS TÉCNICAS DE LOS COMPRESORES A PISTÓN COMPRESORES ROTATIVOS COMPRESORES DE TORNILLO COMPRESORES DE PALETAS. COMPRESORES TIPO ROOTS NUEVOS DESARROLLOS EN LOS COMPRESORES ROTATIVOS 

< Anterior - - Siguiente >