Conceptos Básicos de Neumática e Hidráulica 


¿Qué buscas ? :

Búsqueda personalizada

 

>

 

REGENERACIÓN EN CIRCUITOS HIDRÁULICOS

Con anterioridad vimos brevemente el principio de lo que se llama en hidráulica acción regenerativa.

Cuando un cilindro de doble efecto está conectado de tal manera que la cara ciega del pistón está conectada a la presión de bomba a través de algún tipo de válvula de control direccional , mientras que la contracara anular está conectada  directamente al circuito, de manera que cuando el cilindro está avanzando, esta al mismo tiempo venciendo una contrapresión que está actuando sobre la cara anular, se dice que el cilindro está conectado a contrapresión si el volumen desalojado va directamente drenado al tanque ,  pero si este volumen desalojado se une nuevamente al caudal de bomba que entra a la puerta de presión P de la válvula de mando, entonces a la cara ciega del pistón está llegando en ese momento el caudal de la bomba mas el caudal adicional proveniente del volumen desalojado por el cilindro en su movimiento de avance. Dicho volumen está también presurizado, y al sumarse al volumen suministrado por el caudal de la bomba que está entrando a la cara ciega del cilindro la suma de ambas dará como consecuencia un volumen mayor. Esto ocasiona que el cilindro desarrolle su carrera de avance a una mayor velocidad.

El volumen desalojado por el cilindro en su movimiento de avance se ha regenerado como un volumen de fluido capaz de suministrar un trabajo mecánico. TAL CIRCUITO ENTONCES ES UN CIRCUITO REGENERATIVO.

El propósito de un circuito regenerativo es incrementar la velocidad de la carrera de avance del cilindro . LA REGENERACIÓN NO PUEDE SER NUNCA LOGRADA EN LA CARRERA DE RETORNO.

FUERZA DE EMPUJE DEL CILINDRO

Dado que la misma presión de circuito está actuando sobre ambas caras del pistón, o sea sobre la cara ciega y sobre la cara anular, es evidente que el producto de esta presión por las respectivas superficies de ambas caras del pistón darán fuerzas resultantes de sentidos opuestos, cuya diferencia será el empuje total resultante ( thrust ) bajo el cual actuará el cilindro en su carera de trabajo. El empuje resultante será igual al producto de la presión por la superficie correspondiente a la sección del vástago .

VELOCIDAD DE AVANCE DEL CILINDRO

Dado que el volumen de aceite contenido en la parte delantera del cilindro y desalojado por el pistón en su carrera de avance llanada sobre el lado de la cara ciega un volumen equivalente al volumen total desplazado por el cilindro en su carrera de avance, respetando al mismo, el volumen ocupado por el vástago Por tal causa, cuando el cilindro está cumpliendo su movimiento de avance, la bomba solamente necesitará suministrar precisamente el volumen del vástago.

Por lo dicho, para calcular la velocidad de avance del cilindro cuando el mismo se encuentra bajo una acción regenerativa, basta solamente dividir el caudal de la bomba en litros/ minuto o en litros/segundo por el volumen del vástago en decímetros cúbicos. El resultado será la velocidad de avance del cilindro en decímetros / minutos o decímetros/segundo . Para ilustrar mejor lo dicho daremos a continuación un caso :

Sea un cilindro hidráulico que tenga un diámetro interior de 10 pulgadas, un vástago cuyo diámetro sea 7 pulgadas, la bomba tiene in caudal de 8 G.P.M. a una presión de 1200 libres/pul.² 

Se puede calcular: 

  1.  El empuje del cilindro en su carrera de avance (thrust) 
  2.  La velocidad' de la carrera de avance 
  3.  La velocidad de la carrera de retorno 
  4.  El flujo de aceite sobra la cara "A" y .
  5.  El flujo de aceite sobra la cara "B"

 

  • EMPUJE DEL CILINDRO: Diámetro vástago 7". Superficie 38 pulg.² x 1200 psi. = 45.600 libras.
  • VELOCIDAD DE AVANCE: 8 G.P.M. x 231 pulg. 3 % 38 s.i. = 48" por minuto.
  • VELOCIDAD DE RETORNO: 8 G.P.M. x w3l pulg. 3% ( 78,5 - 38) s.i. = 46" por minuto.
  • FLUJO SOBRE "A": 48" / min, x 78,5 s.i.  % 231 16,3 G.P.M.
  • FLUJO SOBRE "B":          16,3 = 8 GPM ( de la bomba)= 8,3 G.P.N. (flujo regenerativo)

 

Como se ha visto,  para calcular los caudales necesarios sobre ambas caras primeramente se calculó qué caudal sería necesario suministrar a la cara ciega del pistón para que el mismo se desplazara a la velocidad calculada, SI EL CIRCUITO NO FUERA REGENERATIVO. Luego , el caudal  así calculado , restamos el caudal de la bomba , y la diferencia es el caudal regenerativo suministrado por el circuito.

 

EJEMPLOS DE CIRCUITOS REGENERATIVOS

Una válvula de cuatro vías , dos posiciones puede ser usada para lograr regeneración .Para ello conéctese el retorno del cilindro directamente al circuito clausurándose la puerta B de la válvula que corresponderla a la cara anular del pistón , si el circuito no fuera regenerativo.

La otra puerta de la válvula A, conéctese a la cara ciega del pistón .

Este circuito regenerativo actuará de una manera enteramente similar al mostrado en la Fig. 7.13 a. , visto en páginas anteriores en el cual la válvula de tres vías de dos posiciones accionaba el cilindro hidráulico con una acción regenerativa. 

El circuito dibujado en la Fig. 7.10 b. , también es regenerado cuando actúan sobre ambas caras del cilindro la presión de la bomba al mismo tiempo.

Utilizando una válvula de cuatro vías , tres posiciones de centro flotante normal, también se obtiene un circuito regenerativo SI SE CONECTA AMBAS CARAS DEL CILINDRO CON LAS PUERTAS A y B y LA PRESIÓN DE BOMBA SE CONECTA A LA PUERTA DE DESCARGA T DE LA VÁLVULA , mientras que la puerta P de la misma , SE CONECTA A LA DESCARGA DEL TANQUE.

Cuando la corredera de la válvula se encuentra en su posición central ( como está dibujado en la figura) se establece la acción regenerativa. Cuando se actúa la válvula de manera que opera el bloque de la izquierda, el cilindro cumple su carrera de retorno , cuando se invierte la corredera de manera que actué el bloque de la derecha , el cilindro avanza bajo el empuje completo de la presión SIN acción regenerativa. En este circuito, NO es posible detener el pistón en ninguna posición intermedia de su carrera tanto de avance como de retroceso. Así mismo con la válvula de corredera flotante conectada al revés , la bomba no descarga en ninguna posición de la misma a través de la corredera. Por tal motivo, la descarga de la bomba se efectuará independientemente de esta válvula por otros medios.

En la Fig. 7,13.b, se ve otro circuito regenerativo , en la Fig. 7.14 logrado con una válvula de cuatro vías tres posiciones de tipo tandem , centrada por doble resorte y accionada por solenoide, utilizada como válvula principal. 

Esta válvula (1) empleada como válvula principal no es otra cosa que una válvula de control direccional tandem , descarga a la bomba en descarga libre al tanque cuando la corredera se encuentra en su posición central. También controla el movimiento hacía adelante y hacia atrás del cilindro hidráulico.

La válvula 2 , es una válvula de tres vías, dos posiciones actuada por un solo solenoide y resorte antagonista.

Cuando la válvula 2, NO ESTA ENERGIZADA , ( caso de la figura) la válvula  actúa normalmente, y el circuito NO ES REGENERATIVO, actuando el cilindro bajo condiciones normales , cuando la presión de la bomba actúa libremente sobre ambas caras del pistón del cilindro.

Sí el solenoide de la válvula 2 está conectado en paralelo con el solenoide la derecha de la válvula 1 , al energizar a ambos SIMULTÁNEAMENTE el cilindro avanza con acción regenerativa.

Si todos los solenoides están desenergizados , la bomba descarga libremente al tanque y el cilindro queda bloqueado en cualquier posición intermedia de su carrera, tanto de avance como de retroceso.

Si en cambio, y por error es el solenoide de la izquierda de la válvula 1 el que está conectado al solenoide de la válvula 2, el sistema NO FUNCIONA da ninguna manera . Si estando los solenoides desenergizados , se ENERGIZA SOLAMENTE el de la izquierda de la válvula 1 , el cilindro retoma como ya se dijo más arriba, de la manera clásica.

Si finalmente incluimos un presostato accionado por la presión existente en el interior del cilindro durante su carrera de avance, de manera que aquello la actué cuando el cilindro ha retrocedido completamente, y provoque el cierre de un switch de contactos normalmente abiertos, en ese momento el presostato energizará el solenoide de la válvula 2 y estando este conectado en paralelo al solenoide de la derecha de la válvula principal por medio del mismo presostato entonces el cilindro avanzará con acción regenerativa. Cuando se completa la carrera de avance, la presión en la cámara delantera del cilindro cae a cero, el presostato se desenergizá hidráulicamente , corta el contacto cerrado desconectando así los solenoides de la de la válvula principal y de la válvula 2, y así con un puente inversor conectado , ahora el solenoide de la izquierda de la válvula 1, el cilindro retrocederá libremente, estableciéndose así un automatismo con acción regenerativa , y con la alternativa de detener al cilindro en cualquier posición intermedia de su carrera, con descarga libra de la bomba al tanque.

El circuito estudiado, es el más completo para automatismos recíprocos regenerativos con parada en cualquier punto y descarga libre de bomba.

Los cilindros empleados en circuitos regenerativos generalmente son de relación 2:1, lo que significa que la superficie de la cara ciega del pistón es el doble de la superficie anular. En consecuencia, y bajo acción regenerativa, cuando el pistón avanza lo hace que un empuje igual a la mitad del empuje completo, cuando NO EXISTE estado regenerativo . En el primer casas el pistón avanza con el doble de la velocidad que tendría si no existiera esta regenerativo.

VÁLVULAS SOLENOIDES HIDRÁULICAS

Las necesidades crecientes que se presentaran y que se siguen presentando en el campo de la automatización industrial en cuanto hace a la fabricación de maquinarias, dispositivos y diversos elementos accionados hidráulicamente, y la extrema. de sencillez con que se pueden diseñar circuitos eléctricos que funcionan automáticamente comandados desde sencillos microcontactos fin de carreras , microcontactos temporizadores , hasta los modernos programadores lógicos programables (PLCs)  han hecho pensar a los Ingenieros Proyectistas hace algunas décadas atrás lo útil que resultaría comandar circuitos hidráulicos vía automatizaciones eléctricas .

Ello determinó en su momento la creación de la válvula de control direccional accionada por solenoides y/o electroimanes, y , actualmente, este tipo de válvulas es el elementos indispensable para comandar cualquier máquina hidráulica, automática a no , por medio de cualquier tipo de accionamiento eléctrico y/o electrónico .

Las válvulas que a continuación estudiaremos, son las más populares en el campo de válvula de control direccional de flujo hidráulico accionadas eléctricamente .

 

VÁLVULAS DE HIDRÁULICAS DE CUATRO VÍAS, OPERADAS ELÉCTRICAMENTE .

En la Fig. 7.15.a. vemos una válvula directamente accionada por solenoide , que es aquella en la cual el elemento motriz para accionar la corredera deslizante es únicamente un electroimán o un solenoide.

La acción de este, cuando se encuentra energizado, se traduce en un empuje o una tracción de la corredera. En dicha figura tenemos una válvula de cuatro vías, dos posiciones, de retorno por la acción de un resorte antagonista, y accionada por el electroimán dibujado al costado derecho de la válvula. Cuando se energiza el solenoide la corredera es empujada por la acción de este hacia la izquierda, conectan da la presión a la cara 2 del cilindro mientras que la cara 1 queda drenada al tanque. La corriente eléctrica debe ser mantenida sobre el solenoide para que este a su vez mantenga a la corredera empujada totalmente hacia la izquierda. Cuando se corta la corriente 9 y el solenoide se desenergiza ,el resorte empuja enérgicamente a su vez a la corredera hacia la derecha conectándose entonces las puertas del cuerpo de la válvula de la manera demostrada en la figura.

 

 

   

LAS VÁLVULAS SOLENOIDES SIEMPRE SE REPRESENTAN EN LOS ESQUEMAS DE CIRCUITERIA CON EL CONEXIONADO CORRESPONDIENTE A SU POSICIÓN DESENERGIZADA .

Las válvulas directamente accionadas por solenoides se construyen usualmente de pequeño tamaños para tubería no mayor 1/4", debido a las medidas físicas que devienen muy grandes en los solenoides cuando la válvula tiene dimensiones mayores . Asimismo, la corriente eléctrica necesaria para accionar solenoides mayores, toma valores muy grandes y paralelamente se presentan problemas de calentamiento  , los cuales deben ser vigilados con mucha atención. 

En las válvulas de control direccional directamente comandadas por solenoides, para dimensiones de tubería de 1/4" , cuando son manufacturadas por fabricantes acreditados permiten caudales de pasaje de fluido de hasta 30 litros por minuto, para presiones de 1.000 libras por pulgada cuadrada. 

Fig. 7.15 b. Hablamos dicho refiriéndonos a la válvula de cuatro vías, dos posiciones accionada por un solo solenoide y retornada por resorte antagonista que era necesario mantener la corriente eléctrica sobre el mismo durante todo el tiempo que la válvula debía estar actuando.

Algunas veces suele suceder, que la válvula operada por un breve impulso eléctrico y al casar este , debe seguir la corredera permaneciendo en el lugar a la cual aquel la llevó, Evidentemente en este caso no puede tolerarse la acción del resorte antagonista por tal motivo se reemplaza a este por otra solenoide, de manera que la corredera es movida hacia un extremo o el otro de la válvula por la acción del empuje de uno u otro solenoide .

Tal se ve en la figuras anteriores. La corredera permanece al extremo hacia la cual fue llevado hasta el momento que se energiza el solenoide antagonista. 

Debe tomarse especial cuidado, cuando se trabaja con esta válvula, de no montarla en ninguna otra parte o posición que no sea la horizontal como también, si la válvula se encuentra colocada en una máquina móvil de no fijarla nunca con la corredera paralela al sentido del movimiento. En el primer caso la gravedad, y en el segundo la inercia misma de la corredera, en el caso de una frenada brusca de la máquinas podrá descolocar la corredera de una posición determinada, motivando la aparición de inconvenientes a veces difíciles de evaluar. Asimismo, cuidados deben ser tomados para que en ningún caso ambos solenoides se energizan simultáneamente .

Fig. 7.15 c. En los casos vistos anteriormente, las válvulas eran de 2 posiciones , pero si a la válvula accionada por doble solenoide mediante dispositivos adecuados, le colocamos dos resortes exactamente iguales en ambos extremos de la corredera , la misma , cuando ningún solenoide está energizado, se auto centrará por la acción del equilibrado provocado por ambos resortes en la posición central de la válvulas , tenemos así una válvula de cuatro vías, tres posiciones, autocentrada por resortes . 

De la forma como la corredera está construidas tendremos. 

  1. Válvulas de centro cerrado. 
  2. Válvulas de centro abierto 
  3. Válvulas de centro flotante 
  4. Válvulas de centro tandem .

Deben tomarse especiales cuidados que nunca ambos solenoides queden energizados simultáneamente.

La corriente eléctrica debe ser mantenida sobre el solenoide respectivo todo el tiempo deseado para mantener la corredera en uno de sus extremos, Si el solenoide se energiza , permaneciendo el otro solenoide desenergizando , los resortes automáticamente llevan a la corredera a su posición central, Esta válvula puede ser montada en cualquier posición .

VÁLVULAS DE CUATRO VÍAS, OPERADAS POR PILOTO HIDRÁULICO.

Cuando por las dimensiones presentes en grandes válvulas destinadas a manejar caudales de consideración, los esfuerzos físicos de un operador para accionar manual mente la válvula devienen muy grandes , entonces la corredera de la misma se acciona valiéndose de un agente intermedio que alivia el esfuerzo físico del operador. Esto generalmente se logra con concurso de la misma presión del circuito la cual, mediante dispositivos  adecuados que pasee la misma válvula, acciona pequeños pistoncitos , los cuales a su vez empujan la corredera en un sentido y hacia el extremo deseado de la válvula sin ningún esfuerzo físico por parte del operador.

Se dice entonces que la válvula está accionada por piloto hidráulico .

Cuando el control direccional del piloto hidráulico se logra con el concurso de una pequeña válvula auxiliar accionada por solenoide, la cual sirve para manejar la válvula grande entonces ésta toma el nombre de: válvula accionada por piloto eléctricamente controlada .

Estas válvulas se construyen para medidas de tuberías desde 3/4" para adelante, o 3/4" , 1", 1 1/2" ( a veces 1 l/4"); 2" , 2 1/2" , 3"  y 4" . Indefectiblemente todas ellas son comandadas por una válvula "piloto", de simple o doble solenoide, según sea el caso de l/4", que hemos visto mas arriba .

Las válvulas controladas por solenoide y operadas por piloto hidráulico, (ver Fig. 7.16.a.) tienen algunas importantes ventajas respecto de las válvulas directamente operadas por solenoide. 

1 ) Debido a que pueden manejarse con pequeñas válvulas piloto operadas por solenoide miniatura ellas poseen operaciones muy silenciosas, Por otra parte los solenoides pequeños no tiene el zumbido de los grandes, ni tampoco los impactos de la alta intensidad que se hacen presentes cuando la estructura del solenoide es mayor.

2) La velocidad de desplazamiento de la corredera de la válvula principal puede ser regulada estrangulando convenientemente las entradas a la misma de la de los pilotos hidráulicos. En cambio la velocidad del desplazamiento del tragante del electroimán o del núcleo del solenoide NO puede ser regulada, sin provocar el sobrecalentamiento de la bobina eléctrica .

Al poder regular la velocidad de la corredera de la válvula principal, podremos evitar choques ylo golpes de ariete en las tuberías mayores del circuito hidráulico . En la Fig. 7.16.a. , hemos representado en A el corte esquemático de una válvula operada por piloto controlada por solenoide. La válvula principal es de cuatro vías , 2 posiciones, de la misma manera que la válvula piloto , accionada por simple solenoide y retornada por resorte antagonista de la misma manera vista en párrafos anteriores .

El flujo principal de aceite es manejado por la corredera de la válvula principal que está dibujada en la parte inferior de la estructura de la válvula . Esta corredera no esta montada con resorte, ella está potenciada en ambas direcciones por la presión del piloto hidráulico que viene dirigido desde el conjunto superior del dibujo. El drenaje del piloto debe siempre conectarse a la descarga del tanque independientemente de la descarga de la válvula principal, no debe nunca existir en él ninguna contrapresión . De haberla , ocasionaría por una parte una carga extra en el esfuerzo de empuje del solenoide, y por otra parte , y esto es la más importante , se motivarían dificultades para accionar libremente la corredera de la válvula principal, Si el solenoide tuviera que trabajar sobrecargado por existir una contrapresión en el drenaje del piloto , lo más probable es que se quemara por sobrecalentamiento en muy pocos segundos de tiempo.

En la parte B de la Fig. 7.16 se ha representado el símbolo completa USASI de la válvula, La válvula principal  esta dibujada en la parte inferior del conjunto, mientras que la válvula piloto la está en la parte superior del mismo. Se indica asimismo el conexionado entra ambas válvulas , representando las líneas punteadas por los conductos internos de la presión piloto .

El recuadro en trazos punteados, gruesos, que encierra a las dos válvulas, simboliza que ambas se encuentran montadas sobre un mismo conjunto físico. Debido al hecho de que dibujar en el circuito hidráulico este tipo de válvulas con su símbolo completo demandarla mucho tiempo , es que se permite en la práctica la representación gráfica de la circuitería hidráulica, y representar el conjunto completo de esta válvula con el símbolo simplificado parte C de la figura  . Este símbolo simplificado es el mismo que el utilizado para una válvula de las mismas características directamente accionada por solenoide .

<< Anterior << - >> Siguiente >>

 

 

 


Si esta información te resulta útil, compártela :

 

 

 

VOLVER ARRIBA