Conceptos Básicos de Neumática e Hidráulica 


¿Qué buscas ? :

Búsqueda personalizada

 

>

 

El efecto de la temperatura en los fluidos.

Es bien conocido el efecto de expansión de líquidos y gases por aumento de la temperatura. La relación entre la temperatura, volumen y presión de un gas podemos calcularla por la ley de Charles.

La expansión del aceite hidráulico en un recipiente cerrado es un problema en ciertas condiciones por ejemplo un cilindro hidráulico lleno de aceite en una de sus cámaras y desconectado mediante acoplamientos rápidos de la línea de alimentación, no presenta lugar para una expansión cuando es expuesto al calor.

La presión interna puede alcanzar valores de 350 Kg/cm² y aun 1.400 Kg/cm² dependiendo del incremento de temperatura y características del cilindro

Compresibilidad de los Fluidos.

Todos los materiales en estado gaseoso, liquido o sólido son compresibles en mayor o menor grado. Para las aplicaciones hidráulicas usuales el aceite hidráulico es considerado incompresible, si bien cuando una fuerza es aplicada la reducción de volumen será de 1/2 % por cada 70 Kg/cm² de presión interna en el seno del fluido.

De la misma forma que los diseñadores de estructuras deben tener en cuenta el comportamiento del acero a la compresión y elongación , el diseñado hidráulico en muchas instancias debe tener en cuenta la compresibilidad de los líquidos, podemos citar como ejemplo, la rigidez en un servomecanismo, o el calculo del volumen de descompresión de una prensa hidráulica para prevenir el golpe de ariete.

Golpe de ariete

El fenómeno conocido como golpe de ariete, tiene lugar en una tubería o una manguera por la que circula agua con cierta velocidad y se interrumpe, por ejemplo, mediante una llave o la válvula de cierre de una lanza. Entonces, aparecen en las paredes de la misma, unas sobrepresiones que pueden llegar a producir la rotura de la conducción.

Para explicar el fenómeno, supongamos que tenemos una instalación, de longitud L, que se alimenta por gravedad de un deposito que se encuentra a presión constante.

Para simplificar la explicación suponemos que no existen pérdidas por fricción.

Si cerramos la válvula V, el agua que circula con velocidad v, chocará contra la misma. El resultado será un brusco aumento de presión y una detención progresiva del fluido, si esta perturbación se desplaza con una velocidad de a m/s, en un tiempo L/a segundos todo el fluido de la manguera estará en reposo y la conducción sometida a una sobrepresión

Al llegar la sobrepresión a las inmediaciones del deposito, existirá una mayor presión en la conducción que en el depósito, por tanto el agua tenderá a entrar en el mismo, con velocidad -v. La presión volverá a ser la que tenía inicialmente la conducción, pero como el agua ahora circula de la válvula al deposito, en el instante 2L/a segundos, la perturbación llega a la válvula, que como se encuentra cerrada, no se repone el agua que se desplaza y por tanto se genera un depresión en la misma, tal que el agua se frena hasta alcanzar el reposo. Esta depresión se transmite de nuevo por la conducción hasta que transcurridos 3L/a segundos, desde el cierre de la válvula, el fluido no posee velocidad, pero esta en depresión. Por lo tanto el agua tenderá a circular del deposito a la conducción, adquiriendo de nuevo la velocidad v en dirección hacia la válvula. En el momento que la perturbación, que ahora viaja hacia delante, llega de nuevo a la válvula, se repiten las condiciones iniciales del cierre ocurrido 4L/a segundos antes.

El proceso descrito se repite cada 4L/a segundos. Los efectos del rozamiento y la elasticidad del fluido y de la conducción, despreciadas en la descripción anterior, llevan a que el fenómeno se amortigüe y el fluido alcance finalmente el estado de reposo. Se puede demostrar, que la máxima sobrepresión que puede llegar a alcanzarse en un golpe de ariete es:

Δh: sobrepresión, en metros de columna del fluido circulante.

a: velocidad de propagación de la perturbación (m/s).

Vo: velocidad de régimen del fluido.

g: aceleración de la gravedad (9,81 m/s2).

El valor de a depende del material de la conducción, el diámetro y el espesor de la misma. Para dar una idea aproximada en las tuberías de acero es de 1000 m/s, 800 m/s para el fibrocemento y en el caso de conducciones de PVC desciende hasta 200 m/s.

Para tener en cuenta el orden de magnitud de esta sobrepresión calculemos, por ejemplo, en una conducción de PVC, por la que circule agua a 100 mca (10 atm aproximadamente) y con una velocidad de régimen de 1,5 m/s:

Estamos hablado de un incremento del 33% de la presión nominal, pero si empleamos una conducción de fibrocemento con a = 800 m/s, esta sobrepresión sube a 12 atm, duplicándose la presión de régimen.

Esta sobrepresión, es la máxima que se alcanza en el caso de un cierre instantáneo de la válvula de la lanza. Se demuestra, que si no queremos que se produzcan estas sobrepresiones, la solución es cerrar la válvula en un tiempo mayor que 2L/a, pues de esta forma, ningún punto alcanza la sobrepresión máxima, y la primera onda positiva reflejada regresa antes que se genere la última negativa.

En las instalaciones de mangueras habituales, siempre que cerremos una válvula de una lanza, los tiempos de cierre estarán muy por encima de este limite, pues en el caso de una instalación de 100 metros y una tubería de PVC, que en el caso de las mangueras sería menor la velocidad, este tiempo es de un segundo.

A pesar de todo, siempre tenemos que tener en cuenta el golpe de ariete para evitar sobrepresiones a la salida de la bomba, y para un mejor funcionamiento de la instalación. Teniendo en cuenta lo fácil que resulta evitarlo con tan solo cerrar la lanza con un cierre lento (mayor que un segundo).

Transmisión de Potencia

La figura 1-7 muestra el principio en el cual esta basada la transmisión de potencia en los sistemas neumáticos e hidráulicos. Una fuerza mecánica, trabajo o potencia es aplicada en el pistón A. La presión interna desarrollada en el fluido ejerciendo una fuerza de empuje en el pistón B.

Según la ley de Pascal la presión desarrollada en el fluido es igual en todos los puntos por la que la fuerza desarrollada en el pistón B es igual a la fuerza ejercida en el fluido por el pistón A, asumiendo que los diámetros de A y B son iguales.

Transmisión de Potencia a través de una tubería.

El largo cilindro de la figura 1-7, puede ser dividido en dos cilindros individuales del mismo diámetro y colocados a distancia uno de otro conectados entre si por una cañería. El mismo principio de transmisión de la fuerza puede ser aplicado, y la fuerza desarrollada en el pistón B va ser igual a la fuerza ejercida por el pistón A.

La ley de Pascal no requiere que los dos pistones de la figura 1-8 sean iguales. La figura 1-9 ilustra la versatilidad de los sistemas hidráulicos y/o neumáticos al poder ubicarse los componentes aislantes no de otro, y transmitir las fuerzas en forma inmediata a través de distancias considerables con escasas perdidas. Las transmisiones pueden llevarse a cualquier posición . 

aun doblando esquinas, pueden transmitirse a través de tuberías relativamente pequeñas con pequeñas perdidas de potencia.

La distancia L que separa la generación, pistón A, del punto de utilización pistón B, es usualmente de 1,5 a 6 metros en los sistemas hidráulicos, y de 30 a 60 metros en aire comprimido. Distancias mayores son superadas con sistemas especialmente diseñados.

Presión Hidráulica.

La presión ejercida por un fluido es medida en unidades de presión. Las unidades comúnmente utilizadas son :

  • La libra por pulgada cuadrada = PSI
  • El Kilogramo por centímetro cuadrado = Kg/cm²
  • El Kilogramo fuerza por centímetro cuadrado = Kp/cm²
  • El bar = bar

Existiendo la siguiente relación aproximada :

Kg /cm² ~  Kp/cm²  ~ bar

En la figura 1-10A se muestra que la fuerza total aplicada al vástago de un pistón se distribuye sobre toda la superficie de este. Por ello para encontrar la presión que se desarrollará en el seno de un fluido deberemos dividir el empuje total por la superficie del pistón

La figura 1-10B, una fuerza de 2200 Kg. ejercida en el extremo del vástago es distribuida sobre 200 cm² por lo que la fuerza por cm² será de10 Kg. y esto lo indica el manómetro

Este principio tiene carácter reversible  , en la figura 1-11 la presión interna del fluido actuando sobre el área del pistón produce una fuerza de empuje en el extremo del vástago .

La presión interna indicada por el manómetro 70Kg/cm² actúa sobre 120 cm² de área de pistón produciendo un empuje de 8400 Kg.

No olvidemos que para hallar la superficie de un pistón debemos aplicar la formula:

ÁREA =  PI * R2

 

 

 

<< Anterior - Siguiente >>

 

 


Si esta información te resulta útil, compártela :

 

 

 

VOLVER ARRIBA