Oficios Técnicos

www.sapiensman.com/tecnoficio


Información para el estudiante y el trabajador de oficios técnicos. 

 

 


Búsqueda personalizada

Technical Documents - Documentos Técnicos: Instrumentación industrial - Medición de flujo másico

MEDICIÓN DE FLUJO MASICO

La necesidad de tener medidores de flujo más precisos en procesos de transferencia de masa, ha incentivado el desarrollo de medidores de flujo de masa. Existen dos tipos principales de medidores de flujo que determinan directamente el flujo másico. Estos medidores son el Medidor Térmico y el Medidor Coriolis. Los instrumentos de medición de caudales de masa, son de gran importancia en la industria, en razón del gran número de aplicaciones requeridas por este tipo de medición entre las cuales figuran: los balances de masa efectuados en un proceso complejo.

Existen dos grandes grupos de mediciones de caudal de masa, que son:

  • Por Compensación de la Medida Volumétrica.
  • Por Medición Directa.

La Compensación de la Medida Volumétrica, consiste en la adición de un transmisor de densidad al medidor de caudal volumétrico existente en un proceso, y luego, aplicando la siguiente ecuación obtendremos el caudal de masa:

D = m/V ; m = V.D

La implementación de este método se puede llevar a cabo mediante un transductor multiplicador, que permita la operación expuesta en la relación.

La Medición Directa, se podrá realizar mediante una serie de elementos entre los cuales figuran:

  • Medidores Térmicos.
  • Medidores de Momento Angular.
  • Medidores por Frecuencia Natural de Oscilación.

Medidores Térmicos.

Se basan en el principio que establece que un cuerpo se calienta al pasar cerca de otro cuerpo a mayor temperatura. El sistema consiste en un manta de calentamiento aplicada en la parte exterior de la tubería que proporciona calor constante, y dos termocuplas conectadas aguas arriba y aguas abajo de dicha manta; cuando el caudal sea bajo, la transferencia de calor será más efectiva.

Estos medidores generalmente son de dos tipos: unos que miden la velocidad de pérdida de calor de un cuerpo caliente debido al paso de una corriente de fluido a través de él; y otros que miden el incremento de temperatura de una corriente de fluido a medida que pasa sobre o a través de un cuerpo caliente. En ambos casos el flujo de masa se determina a partir de las propiedades físicas del fluido tales como conductividad y calor específico, los cuales, dentro de ciertos límites, son independientes de la temperatura y presión. Si las propiedades térmicas del fluido que están siendo medidas son constantes y se conocen, la diferencia entre dos lecturas de temperatura es proporcional al flujo másico.

Figura - Medidor de flujo másico tipo térmico

El elemento de calentamiento aumenta la temperatura en uno de los RTD produciéndose una diferencia de temperatura entre los RTD, la cual es mayor a cero flujo, y disminuye a medida que el fluido pasa a través del sensor enfriando la RTD calentada. Los cambios en el flujo afectan directamente la disipación de calor y consecuentemente, la diferencia de temperatura entre los dos RTD. Esta diferencia se convierte electrónicamente en una señal de salida linealizada, proporcionando una medición del flujo másico, exacta y repetitiva. El compensador instalado en el sensor asegura que los cambios en la temperatura del medio afecten de la misma forma al elemento de calentamiento , y a las dos RTD. Esto permite mantener la exactitud del medidor, aun en presencia de fluctuaciones en la temperatura del medio.

Estos medidores deben ser calibrados para un fluido específico, debido a que el calor específico varía de acuerdo al tipo de fluido. Generalmente se utilizan para medir flujo de gas. Su exactitud es de aproximadamente +1% del flujo.

Medidores de Momento Angular.

Se basan en el principio de conservación del momento de los fluidos; éstos constan generalmente de una turbina que se encuentra acoplada a un medidor del momento angular. En términos comunes se puede decir, que el momento así medido será directamente proporcional al caudal de masa del fluido.

Medidores por Frecuencia Natural de Oscilación.

Medidor de caudal de masa directo que trabaja mediante el efecto que tienen las oscilaciones de frecuencia natural de vibración con respecto al caudal de masa que pasa por tramo de tubería que está construido con materiales de buena elasticidad y de una forma geométrica muy particular.

Un objeto que se mueve en un sistema de coordenadas que rota con una velocidad angular, experimentará una fuerza de Coriolis proporcional a la masa, a la velocidad del objeto y a la velocidad angular del sistema. Esta fuerza es perpendicular a la velocidad del objeto y a la velocidad angular del sistema de coordenadas.

En la nueva generación de los medidores de Coriolis, comercialmente disponibles, el fluido a la entrada del medidor se divide entre dos tubos en forma de U, los cuales tienen un diámetro menor que el de la tubería del proceso. El flujo sigue la trayectoria curva de los tubos, y converge a la salida del medidor. Estos tubos se hacen vibrar a su frecuencia natural por medio de un mecanismo magnético. Si en vez de hacerlos rotar continuamente los tubos vibran, la magnitud y dirección de la velocidad angular es alternada. Esto crea una fuerza Coriolis alterna. Si los tubos en forma de U son suficientemente elásticos, las fuerzas de Coriolis inducidas por la masa del fluido producen una pequeña deformación elástica. A partir de ella se mide y calcula el flujo de masa.

Hasta hace poco tiempo, no existía ningún método práctico para medir la masa . Tales mediciones son necesarias en infinidad de aplicaciones entre las cuales se encuentran: los balances de masa de productos procesados y obtenidos en la planta, transferencia de custodia.

La medición directa de la masa de flujo evita la necesidad de utilizar cálculos complejos y como estándar fundamental de medición, la masa no deriva sus unidades de otra fuente ni se ve afectada por variaciones de temperatura o presión; tal constancia hace a la masa, la propiedad ideal para medir. El primer Medidor de Flujo Másico (MFM) fue desarrollado por la compañía Micro Motion y funciona según el principio Coriolis.

El medidor de Coriolis se basa en el teorema de Coriolis, matemático francés (1795- 1843) que observó que un objeto de masa m que se desplaza con una velocidad lineal V a través de una superficie giratoria que gira con velocidad angular constante w, experimenta una velocidad tangencial (velocidad angular x radio de giro) tanto mayor cuanto mayor es su alejamiento del centro. Si el móvil se desplaza del centro hacia la periferia experimentará un aumento gradual de su velocidad tangencial, lo cual indica que se le está aplicando una aceleración, que es precisamente la aceleración de Coriolis. Este fenómeno es el causante de que el remolino que se forma en el fondo de un depósito al vaciarlo, gira a derechas en el hemisferio Norte y a izquierdas en el hemisferio Sur. Asimismo todos los vientos de la circulación general que soplan desde el Norte al Sur en el hemisferio Norte son desviados, debido a la rotación de la Tierra de Oeste a Este, constituyendo los vientos predominantes de oeste. Por otro lado, el célebre péndulo de Foucault demuestra también el fenómeno.

La figura siguiente muestra la configuración de un medidor tipo Coriolis; debido a que la masa no cambia, el medidor es lineal y no tiene que ser ajustado para variaciones en las propiedades del líquido. También elimina la necesidad de compensar por variaciones en la presión y temperatura. Este medidor es útil especialmente para líquidos cuya viscosidad varía con la velocidad. La exactitud típica de estos medidores está entre un +0,20% a +0,40% del valor máximo del flujo de diseño. Generalmente se emplean con fluidos líquidos, aunque también puede utilizarse con gases secos y vapor sobrecalentado.

PARTES DE UN MEDIDOR DE FLUJO MÁSICO CORIOLIS

Un medidor de flujo de masa , también conocido como caudalímetro Coriolis, medidor de flujo inercial y medidor de flujo de Coriolis , es un dispositivo que mide la cantidad de líquido que fluye a través de un tubo. No mide el volumen del líquido que pasa a través del tubo, mide la cantidad de masa que fluye a través del dispositivo.

La medición del caudal volumétrico es proporcional a la tasa de flujo de masa sólo cuando la densidad del fluido es constante. Si el líquido ha variado la densidad, o contiene burbujas, entonces la tasa de flujo de volumen multiplicado por la densidad no es una medida exacta de la tasa de flujo de masa.

En un medidor de flujo de masa el fluido está contenido en un tubo liso, sin partes móviles, que necesita ser limpiado y mantenido, ya que de lo contrario se impediría el flujo.

Representación de la fuerza reactiva. Fuerza Coriolis y velocidad vertical del flujo en el extremo de salida del sensor.

  • La Unidad Sensora.
  • La Unidad Electrónica

La Unidad Sensora :

La Unidad Sensora constituye el componente que está en contacto directo con el proceso.

COMPONENTES DE LA UNIDAD SENSORA.

Tubos de flujo : Son tubos en forma de U por donde circula el fluido de proceso, están constituidos básicamente de acero inoxidable 316L libre de obstrucciones y diseñados para vibrar a su frecuencia natural. Este hecho, permite una reducción en la energía requerida por éstos para oscilar. Están soldados a tubos de unión múltiple.

Tubos de Unión Múltiple (Manifolds): Su función es la separar el fluido en dos partes iguales en la entrada del medidor para luego recombinarlo en la salida. Estos tubos están soldados al espaciador, a la placa base, accesorios de fluido y a los tubos de flujo. El fluido fluye a través de los accesorios de fluido, tubos de unión múltiple y tubos de flujo.

Espaciador: Son segmento de tubería de acero inoxidable 304 usados para tres propósitos. Primero, separa los tubos de unión múltiple de modo que se alínien debidamente con los tubos de flujo. Segundo, actúa como un conducto para cables desde adentro del compartimiento del sensor hacia la Unidad Electrónica. Tercero, provee estabilidad dimensional para el sensor y ayuda a neutralizar las tensiones de la tubería que podrían afectar la operación del medidor.

Hay una plaqueta sobre una de las placas del espaciador para permitir un fácil acceso a conexiones de cables.

Placa Base: Consiste en una de las piezas lisas rectangulares de acero inoxidable. La placa está soldada a los tubos de unión múltiple como también a la cubierta.

Barreras Expansoras: Las barreras son piezas rectangulares lisas que abrazan a los tubos de flujo y los posicionan en forma precisa, a fin de mantener las zonas de vibración separadas de las soldaduras de conexión de los tubos de unión múltiple.

Bobina Impulsora: La bobina impulsora es un dispositivo magnético que convierte la señal eléctrica proveniente de la Unidad Electrónica en una fuerza que hace vibrar a los tubos de flujo. Esta bobina lleva anexo un magneto y juntos están fijados al centro de los brazos de soporte.

Brazos de Soporte : Los brazos de soporte, uno abraza a los tubos de flujo, el otro sirve de soporte a la bobina impulsora y a los detectores de posición. Las bobinas y detectores están unidos a uno y los magnetos asociados, al otro.

Detectores de Posición: Son los elementos sensores primarios para determinar el ángulo de torsión del tubo de flujo en función del tiempo. Los detectores, envían esta información a la Unidad Electrónica, donde se procesa y convierte a un voltaje proporcional a la rata de masa de flujo. Están constituídos por una bobina y un magneto asociado a ésta.

Se usan bases de cerámicas para las bobinas, lo que garantiza la estabilidad térmica.

Los magnetos están posicionados de manera que las bobinas se mantengan dentro de un campo magnético, bajo cualquier circunstancia de vibración.

Sensores de Temperatura : Para todos los modelos, una resistencia detectora de temperatura (RTD) está unida a la parte inferior de uno de los tubos de flujo. Este sensor es utilizado con dos objetivos: Primero, a través de la Unidad Electrónica, compensa los efectos de la temperatura sobre el modo de rigidez de los tubos de flujo controlando así, la escala de conversión necesaria de voltaje/frecuencia de la señal de flujo.

A medida que sube la temperatura del fluido, los tubos se tuercen cada vez más para la rata de flujo dada. El segundo objetivo de este sensor, consiste en convertir la señal que éste produce en variaciones de voltaje el cual cambia linealmente con la temperatura. Posteriormente esta señal de voltaje ha ser convertida en lectura de temperatura.

Accesorios de Fluidos: Las bridas están fabricadas de acero inoxidable 316 L. Los Cuellos, entre las bridas y los Tubos de Unión Múltiple, son de acero inoxidable 304.

Cubierta o Caja del Sensor: Es de acero inoxidable 304 y esta soldada a la placa base, formando esta soldadura, un sello que protege el ensamblaje del tubo contra influencias exteriores. En la parte superior de cada cubierta existe un terminal llamado “Snnuber” que puede ser usado para satisfacer los requerimientos de tierra (GND) de circuitos eléctricos.

PRINCIPIOS DE OPERACIÓN

Todos los medidores de flujo másico trabajan bajo el mismo principio que consiste en la aplicación de la segunda ley de Newton: “ fuerza es igual a Masa por Aceleración “ (F= m.a ). Esta ley es utilizada para determinar la cantidad exacta de masa que fluye a través del medidor. Dentro de la Unidad Sensora, los tubos de flujo se han diseñado para vibrar a su frecuencia natural con respaldo de un sistema electromagnético. Esta vibración tiene una amplitud que es aproximadamente menor a 1 mm, y frecuencia entre 40 y 120 Hz dependiendo del tamaño del medidor.

La masa correspondiente a cierto flujo, adquiere una velocidad lineal al fluir a través del tubo. Las vibraciones de éste sobre un eje (eje de soporte) resultan perpendiculares al flujo y hacen que el mismo acelere en el extremo de entrada y desacelere en el de salida, causando que el tubo se doble. Esto se puede analizar de manera más sencilla y detallada a continuación: En primer lugar, imaginemos al tubo de flujo como un par de piernas, pierna 1 por donde entra el flujo y pierna 2 por donde sale.

El flujo entra al tubo por la pierna con una velocidad horizontal paralela a éste, pero al momento y por efecto de la vibración que es máxima al final de la pierna un poco antes del dobléz, se le induce una velocidad vertical y en consecuencia, una fuerza reactíva del flujo se opone a la acción del tubo creándose un desequilibrio de éste que a manera de compensarlo y por efecto del flujo saliente, causa que la segunda pierna se deforme con una fuerza igual en magnitud y en sentido opuesto a la pierna 1. Al momento de salida, esa velocidad vertical comienza a disminuir progresivamente debido a que la vibración se va haciendo nula justamente antes de abandonar la segunda pierna.

La fuerza de torsión inducida por el flujo crea un efecto llamado Coriolis que es un proporcional a la rata de flujo masivo. Este efecto constituye la fuerza utilizada para la detección de la masa de flujo.

CARACTERÍSTICAS DE LOS MEDIADORES DE FLUJO MÁSICO

Precisión: el grado de precisión de los MFM incluyen errores de interferencia, repetibilidad y estabilidad cero pero, ya que son considerados independientes, éstos suman por sus raíces cuadradas y no por valores acumulativos. Así, el error real casi siempre será del 0.2% de la rata de flujo (+/-) la estabilidad cero dada en las especificaciones.

Repetibilidad: para un MFM repetibilidad es menor del 0.1%.

Estabilidad del Cero: La señal de la rata de flujo permanece lineal cuando éste vale cero. Existe poca estabilidad a ratas de flujo muy bajas.

Rango de Flujo: El rango de flujo es especificado en libras o kilogramos por minuto, para cada tamaño de medidor. Las únicas limitaciones son caídas de presión aceptables del sistema y la poca estabilidad a ratas de flujo muy bajas.

Flujo Mínimo a Escala Completa: Es la rata más baja de flujo completo en el que el interruptor de selección de rango (Span Select Switch) del medidor puede ser ajustado.

En este valor el medidor no puede proveer salida a escala completa.

Flujo Máximo a Escala Completa: Es la rata más alta de flujo completo en el que el interruptor de selección de rango (Span Select Switch) del medidor puede ser ajustado. Es el valor más alto del rango de flujo.

Rango de Presión de Operación : Ésta es de al menos ¼ de la presión de ruptura del material utilizado en conformidad con ANSI/ASME * B31.3, a temperatura ambiente.

VENTAJAS DEL SISTEMA

  1. Por utilizar como patrón de medida unidades de masa, ésta no se ve afectada por cambios en los parámetros de Temperatura o Presión.
  2. Por no poseer partes móviles ni desarmables, requiere de mínimo mantenimiento.
  3. Permite la medición de flujo en forma bidireccional.
  4. La señal eléctrica proporcional al flujo ya viene corregida, es decir, que no amerita de cálculos complejos para la lectura.
  5. Es de fácil calibración en el campo.
  6. El error real es de menos del 0.2% de la rata de flujo (+/-) la estabilidad cero.

DESVENTAJA DEL SISTEMA

1.- Constituye el sistema de medición de flujo de mayor costo.

 

MEDIDOR DE TURBINA

El medidor de turbina es un transductor que detecta la velocidad de un flujo utilizando un tubo de flujo con una turbina de paletas suspendida axialmente en la dirección de flujo.

Cuando el liquido choca contra la parte aguas arriba de las paletas de la turbina, se produce un área de baja presión en el lado aguas abajo. El diferencial de presión (o caída de presión) produce movimientos de las paletas hacia el área de baja presión. La tasa de rotación del rotor es directamente proporcional a la tasa de flujo a través del flujo. Esta rotación es luego convertida en una señal de salida utilizable. El medidor de turbina está diseñado para eliminar prácticamente cualquier desgaste interno con el balanceo hidrodinámico del rotor. Cuando el choque de la línea se sobrepone temporalmente al balance hidrodinámico, el desgaste es minimizando con superficies de contacto y arandelas de “tungsten carbide”.

La salida eléctrica es generada utilizando el principio de reluctancia, en el cual una señal es generada por el pase del rotor de la turbina en proximidad cercana a una bobina de señal. La señal es luego enviada a un amplificador que genera un pulso DC y lo transmite a la instrumentación externa. Típicamente, la instrumentación puede incluir un totalizador de factor, utilizando para una indicación de flujo volumétrico (en unidades de ingeniería).

O un contactor de frecuencia o convertidor puede ser utilizado para proveer una indicación instantánea de la tasa de flujo. La curva de calibración del medidor puede obtenerse con un cuadro mostrando las diferentes tasas de flujo.

Temas relacionados :

 

 

 

 

 

 

 
Volver arriba