Oficios Técnicos

www.sapiensman.com/tecnoficio


Información para el estudiante y el trabajador de oficios técnicos. 

 

 


Búsqueda personalizada

Technical Documents - Documentos Técnicos: Medición de temperatura

c.4 Termopozos

En la mayoría de las aplicaciones de medición de temperatura no es recomendable exponer el elemento sensor al fluido del proceso. La utilización de un termopozo, a pesar de que introduce retardos en la medición, es recomendable para proteger al elemento sensor de la corrosión, erosión y altas presiones además de permitir su remoción o cambio mientras la planta o el proceso está en operación. El termopozo puede tener varias configuraciones y formas para su montaje, tal como se muestra en la figura 14. El termopozo puede ser de forma recta, cónica o escalonada. La forma de conexión al proceso puede ser roscada o por medio de bridas.

La longitud de inserción “U” de un termopozo, es la distancia desde el extremo libre del termopozo hasta, pero no incluyendo, la rosca externa u otro medio de conexión al recipiente o tubería, figura 14. La longitud de inmersión “R”, es la distancia desde el extremo libre del termopozo hasta el punto de inmersión en el medio cuya temperatura está siendo medida. La longitud de inmersión requerida para obtener una exactitud y tiempo de respuesta óptimos es una función de factores mecánicos tales como: tipo de elemento sensor, espacio disponible y diseño de la conexión del termopozo al recipiente o tubería. La inmersión óptima también depende de las consideraciones de transferencia de calor determinadas por las propiedades físicas del fluido, tales como su velocidad, entre otras.

Figura 13. Inserción e inmersión de un termopozo

c.5 Instalación de termopares

Las instalaciones industriales de termopares generalmente están constituidas por el termopar con su termopozo, nivel de extensión, cabeza de conexión, figura 15. Se requiere también una longitud de cable de extensión y un instrumento indicador, registrador o controlador con compensación automática de la junta de referencia. Los cables de extensión son generalmente del mismo material de los elementos del termopar, o pueden ser de otros materiales los cuales generen esencialmente el mismo milivoltaje que el termopar.

Figura 14. Tipos de Termopozos

Figura 15. Termopar con cabezal de conexión

A los efectos de realizar una buena instalación del termopar, se debe tener en cuenta los factores siguientes:

  • Conexión de la junta
  • Descalibración
  • Ruido
  • Medición de temperaturas promedio y diferencias de temperaturas

Conexión de la Junta:

Existen varias formas de conectar dos cables de termopar: soldadura de plata y soldadura eléctrica. Las termopares comerciales son soldadas con equipos especiales para garantizar uniformidad en la soldadura. Una mala soldadura puede resultar en un “circuito abierto”.

Descalibración:

La descalibración es el proceso de alteración de las características físicas del cable de termopar, de modo que no reproduce los valores dados por la NBS dentro de límites especificados. La descalibración puede producirse por la difusión de partículas atmosféricas dentro del metal causada por haber sometido el termopar a temperaturas extremas o por “trabajo en frío” del metal (un efecto que puede ocurrir cuando el cable es estirado a través de un conduit o sometido a esfuerzo por manejo inadecuado o vibración).

Ruido:

Los circuitos de termopares están sujetos a tres. tipos principales de ruido: estático, magnético y común. El ruido estático es causado por un campo eléctrico radiado por una fuente de voltaje que esté siendo acoplada capacitivamente en el circuito del termopar. La mejor forma para evitar el ruido estático es colocando el circuito dentro de una pantalla, la cual aísla el par de cables del termopar de la influencia exterior. La pantalla debe ser aterrada. El ruido magnético es producido por corrientes que fluyen a través de conductores y piezas de equipos eléctricos, tales como motores, generadores, etc. La mejor forma de reducir este tipo de ruido es utilizando cables trenzados. Los cables trenzados hacen que el ruido se cancele en secciones adyacentes del cable. El ruido común es un problema que se presenta cuando hay dos tierras diferentes en un circuito con corriente fluyendo a través de ellas. La mayoría de los termopares utilizadas son del tipo “aterrados”; esto es, la junta de medición está conectada física y eléctricamente al termopozo en el cual está instalada. Cuando el circuito de tierra (o pantalla) de un termopar (o cualquier objeto metálico cercano tal como el conduit, bandeja, etc.); está a un potencial diferente del de la junta de medición, fluyen corrientes en el cable de extensión produciéndose interferencias en la señal del termopar. El método común para evitar problemas de ruido común es aterrando el circuito de tierra del cable de extensión en la junta de medición.

Medición de Temperaturas Promedio y Diferencias de Temperaturas:

Para medir la temperatura promedio de un proceso o equipo se pueden usar termopares conectados en paralelo. El voltaje en el instrumento es el promedio de los voltajes generados por cada uno de los termopares conectados en paralelo. Este voltaje es la suma de los voltajes individuales dividido por el número de termopares. Todos los termopares deben ser del mismo tipo y deben ser conectados utilizando los cables de extensión apropiados. Para evitar un flujo de corriente a través del circuito de tierra, los termopares no deben aterrarse. Para minimizar el efecto de resistencias no deseadas en los termopares y en sus cables de extensión en el punto de conexión paralela, se utiliza una resistencia en serie con cada termopar. Esta resistencia previene el flujo de corriente entre los termopares, lo cual podría inducir errores de medición. El valor de esta resistencia debería ser alto comparado con la resistencia total del circuito. Una resistencia de 1.500 Ohms, generalmente trabaja bien.

Dos termopares pueden ser utilizados para medir la diferencia de temperatura entre dos puntos. Los termopares deben ser similares y se conectan utilizando cables de extensión del mismo material del termopar. La conexión debe hacerse de forma tal que los voltajes generados se opongan uno al otro. Al igual que en el caso de termopares en paralelo, los termopares no deben aterrarse.

d. Termómetros de resistencia (RTD)

El principio de operación de los detectores de temperatura tipo resistencia (RTD), está basado en el hecho de que la resistencia eléctrica de los metales varía directamente con la temperatura. La magnitud de este cambio frente a 1 °C de cambio en la temperatura, se conoce como el“coeficiente de resistencia de temperatura” (a). Para la mayoría de los metales puros, este coeficiente es constante dentro de un rango de temperatura.

El cambio en la resistencia es una función del coeficiente de resistencia de temperatura y puede ser expresado por la ecuación:

Los metales comúnmente utilizados en el diseño de detectores de resistencia son: platino el cual tiene un coeficiente de 0,00392 Ohms/ Ohms °C y se utiliza para medir temperaturas en el rango de -263°C a + 545 °C, y níquel, el cual tiene un coeficiente de 0,0063 Ohms/ Ohms °C, utilizado para medir temperaturas en el rango de -190 °C a + 310 °C. Otros materiales utilizados son: plata, tungsteno, cobre y oro. Las características principales de los elementos utilizados como detectores de resistencia, están listados en la tabla 3.

Tabla 3 Características de los elementos más utilizados como RTD

La construcción industrial del RTD es prácticamente idéntica a la de los termopares, en su apariencia externa generalmente no existe diferencia física. Los RTD se construyen de varios tipos:

  • En un circuito básico de dos cables se utiliza principalmente el tipo de conexión de dos hilos, con una conexión a cada terminal de la RTD. En este diseño, la resistencia de los cables de conexión, así como también las variaciones de resistencia por cambios en la temperatura ambiente, se incluyen en la medición de la resistencia de la RTD. Este tipo de configuración puede ser utilizado cuando los cables de conexión son cortos, de tal manera que su resistencia total sea despreciable, por ejemplo en transmisores-RTD integrados.
  • El tipo de 3-hilos es el normalizado. Los cables que conectan el RTD al circuito de medición tienen resistencias cuyos efectos ya mencionados, tienden a cancelarse.
  • La configuración de 4-hilos, es decir, dos hilos más lazo de compensación, proporciona mayor exactitud en la medición que las configuraciones anteriores.

Si los cuatro hilos son del mismo diámetro, longitud y material, y están sujetos a los mismos cambios de temperatura ambiente, y los dos pares de hilos están en pares opuestos del circuito del puente de Wheatstone, la resistencia de los cables no tiene ningún efecto sobre la medición de la resistencia del RTD. En este tipo de configuración, los cuatro hilos están conectados al RTD, dos en cada extremo. Una corriente constante se suministra al RTD a través de los cables externos, y el voltaje del RTD se mide por medio de un voltímetro de alta impedancia, colocado en los dos hilos internos.

De las configuraciones descritas, la más usada es la 3 hilos, ya que proporciona suficiente exactitud para la mayoría de las mediciones industriales.

Los detectores de resistencia proporcionan una medición más exacta que la que es posible lograr cuando se utilizan termopares. Por lo tanto, los detectores de resistencia se utilizan en aquellas instalaciones donde se desea una gran exactitud.

e. Termistores

Los Termistores son semiconductores electrónicos con un coeficiente de temperatura de resistencia negativo de valor elevado, por lo que presentan unas variaciones rápidas y extremadamente grandes para los cambios relativamente pequeños en la temperatura. Los Termistores se fabrican con óxidos de níquel, manganeso, hierro, cobalto, cobre, magnesio, titanio y otros metales, y están encapsulados.

La relación entre la resistencia del termistor y la temperatura viene dada por la expresión:

Así como el RTD, el termistor es también una resistencia sensible a la temperatura, mientras que el termopar es el transductor de temperatura más versátil; y el RTD es el más estable, el termistor es el más sensible. Los Termistores generalmente están constituidos de materiales semiconductores.

La mayoría de los Termistores tienen un coeficiente de temperatura negativo; esto es, su resistencia disminuye al aumentar la temperatura. La mayoría de los Termistores exhiben grandes coeficientes de temperatura (lo que les permite detectar cambios mínimos en la temperatura), y una respuesta altamente no lineal.

La figura16 muestra la variación del voltaje o la resistencia en función de la temperatura para termopares, RTD y Termistores. En esta figura puede notarse que mientras el termopar y el RTD exhiben una respuesta más o menos lineal, los Termistores producen una respuesta no lineal.

Figura 16. Comparación de variación de voltaje o resistencia contra temperatura

Otro tipo de configuración de 4 hilos se utiliza para mediciones de alta precisión. En este tipo de circuito, los cuatro hilos conectan al sensor (dos en cada extremo). A través de los dos hilos externos se suministra una corriente constante al RTD. El voltaje a través del RTD se mide con un voltímetro de alta impedancia conectado a través de los dos hilos internos. Debido a que los Termistores están constituidos por semiconductores, son más susceptibles a descalibrarse a altas temperaturas, si se les compara con los termopares o los RTD. El uso de los Termistores generalmente está limitado a rangos de temperatura de 100 a 400 °C aproximadamente. En la tabla 4 se presenta un cuadro comparativo entre termopares, RTD y Termistores.

f. Pirómetros de radiación

La mayoría de las mediciones de temperatura se realizan colocando el sensor dentro de un termopozo en contacto con el medio cuya temperatura se quiere medir. Sin embargo, el contacto del sensor con el medio es difícil o impráctico cuando el objeto se está moviendo, el ambiente es corrosivo, abrasivo, está a una temperatura extremadamente alta, o el objeto es muy pequeño, muy largo, o muy frágil, está inaccesible o la medición está siendo realizada al vacío. Bajo estas condiciones es más conveniente utilizar un sensor que no entra en contacto con el objeto o el medio. Estos sensores son los Pirómetros de Radiación.

Tabla 4 Comparación entre elementos de medida de temperatura

Los pirómetros de radiación permiten medir temperatura sin contacto físico con el medio. Esto es posible debido a que todos los objetos emiten energía radiante, siendo la intensidad de esta radiación proporcional a la temperatura. La medición de temperatura utilizando pirómetros de radiación está basada en la ley que establece que: “entre dos cuerpos que están a diferentes temperaturas, existe una transferencia neta de energía radiante desde el cuerpo más caliente hacia el cuerpo más frío”. Esta ley también establece que la cantidad de energía transferida por unidad de tiempo es proporcional a la cuarta potencia de la diferencia de temperatura entre los dos cuerpos, esta ley se conoce como la Ley de Stefan-Boltzmann y viene dada por la siguiente ecuación:

La radiación es un fenómeno ondulatorio análogo a la luz y ocupa un lugar definido en el espectro.

Los pirómetros que responden a todas las longitudes de onda y por lo tanto operan bajo la ecuación de Stefan-Boltzmann, se denominan Pirómetros de Radiación Total. Otra clase de pirómetros que utilizan solamente bandas angostas de longitud de onda en el espectro visible, se conocen con el nombre de Pirómetros Ópticos. Por lo tanto un pirómetro de radiación total es no selectivo, mientras que un pirómetro óptico es selectivo. Otro tipo de pirómetro que es parcialmente selectivo se denomina Pirómetro de Radiación Parcial. ( Fuente informativa : UNIVERSIDAD DE ORIENTE )

<< Anterior


 

 

 

 

 

 

 
Volver arriba