Hawkers es la marca que ha revolucionado el sector de las gafas de sol vendiendo a través de internet. Hawkers es una marca de gafas de sol internacional que cuenta con más de 400 modelos de gafas diferentes por temporada. Juego de monturas redondas, cuadradas, grandes, pequeñas... Un amplio catálogo con el que llegar a cualquier target de publico por sus posibilidades de segmentación.

 



 

Oficios Técnicos

www.sapiensman.com/tecnoficio


 


 

HOME

Distribución y utilización de la electricidad

Distribución de energía eléctrica

La energía eléctrica generada en las centrales eléctricas se distribuye por medio de una red de líneas interconectadas, a las casas y a las fábricas. Esta distribución se realiza en alta tensión, a 220 kV o 380 kV (son tensiones normales en América Latina). Después, estas tensiones se reducen a subestaciones transformadoras para dar servicio a los distintos usuarios; hay industrias que utilizan tensión a 20 kV, otras utilizan 15 kV, en las casas se utiliza actualmente 220 V  y en la industria es normal utilizar 220 V/380 V. En la figura 1 se puede observar un esquema de cómo puede ser la red de distribución, aunque no es siempre así, pues depende de muchos factores.

La red se diseña con capacidad para suministrar energía cuando se producen fuertes demandas, apareciendo picos de consumo durante el día y la noche o durante inviernos muy fríos. Normalmente hay capacidad de sobra que permite continuar con el suministro aunque haya centrales eléctricas de la red que no estén en ese momento contribuyendo al sistema, por avería o mantenimiento. Hay un «despacho central» desde donde se observa constantemente la demanda, pudiendo asignar o cambiar distintas fuentes de suministro de un área a otra si es necesario. Por tanto, es bastante difícil que el suministro quede interrumpido.

Figura 1.-Red de distribución de energía eléctrica.

¿Por qué se utiliza tensión alterna en vez de utilizar tensión continua?

 

A primera vista puede parecer que es una complicación innecesaria utilizar tensión alterna en vez de continua en el suministro de energía eléctrica, puesto que en muchas aplicaciones lo primero que se debe hacer es rectificarla. La razón principal está en el coste de la transmisión de electricidad a grandes distancias.

En la figura 2 se plantean dos casos en los cuales una central eléctrica debe proporcionar 1.000 kW, en un caso utilizando 10 kV y 100 A, y en otro 100 kV y 10 A, por medio de unos cables que tienen una resistencia de 10 Ω. En el primer caso, la potencia disipada por calor en los cables  (W= I2 x R) es de 1002 x 10, ó W =  100.000 W, o 100 kW, quedando sólo 900 kW de potencia para el consumidor. En el segundo caso, la potencia calorífica disipada es sólo de 102 x 10 = 1.000 W, o 1 kW, quedando 999 kW de potencia útil. Si hay menos intensidad de corriente, las pérdidas caloríficas son menores, pero se necesita tener una tensión elevada. Por tanto, es ventajoso utilizar alta tensión en la transmisión de electricidad a largas distancias. Además, si las corrientes son más pequeñas se pueden utilizar cables más finos.

Sin embargo, las tensiones muy altas pueden ser extremadamente peligrosas y no serían adecuadas para uso doméstico e industrial.

Gracias a los transformadores, que pueden elevar o reducir las tensiones alternas, se pueden utilizar tensiones diferentes sin pérdidas de potencia significativas. Puesto que no hay sistemas comparables para transformar las tensiones continuas, se elige la transmisión en alterna y a alta tensión.

Figura 2.-La transmisión en alta tensión permite perder menor energía.

En la figura 3 se ilustra un pequeño modelo de laboratorio que sirve para comprobar la ventaja de la transmisión de electricidad a tensiones elevadas. En a) hay una fuente de tensión alterna de 12 V que alimenta dos lámparas, una directamente y otra por medio de unos cables que tienen una resistencia de unos pocos ohmios; la lámpara lejana luce muy tenuamente. En b) se eleva la tensión hasta 220 V y después se reduce a 12 V al final de los cables de transmisión; en este caso la lámpara lejana luce casi tanto como la otra.

Figura 3.-Demostración de la ventaja de transmitir a alta tensión.

 Electricidad en el hogar

La energía eléctrica llega a las casas a 220 V, después de haber  pasado por pequeños transformadores locales, como el representado en la figura 4, que reducen el nivel de tensión de 380 a 220 V (en otros países se utilizan otros niveles de tensión en las casas).

Las conexiones finales se realizan a través de cables enterrados o  aéreos. En la casa entran dos cables, uno de una fase y el otro el neutro (F y N en la figura 5). A veces hay un tercer cable, el de tierra (T en la figura), que está conectado a un objeto metálico enterrado, proporcionando un potencial nulo.

Figura 4.-Dos transformadores que se utilizan en distribución de energía eléctrica: a) utilizado para dar suministro a una granja aislada, y b) para dar servicio a un pueblo o a un barrio de una ciudad.

En los cables de fase se colocan fusibles . La caja de distribución puede preceder a circuitos como el representado en la figura 5, que es un circuito en anillo, utilizados para obtener puntos de potencia, que pueden ser conectados en cualquier parte del anillo, y que tienen la ventaja de que se necesita menos cable que si estuvieran alimentados de forma separada. Una casa de dos pisos puede tener dos circuitos en anillo, uno para el piso de abajo y otro para el piso de arriba. Los enchufes que se utilizan para iluminación no necesitan tanta corriente como los puntos de potencia y normalmente se conectan simplemente en paralelo. Los circuitos especiales por los cuales circulan corrientes elevadas, como son los que alimentan calentadores de agua o cocinas eléctricas, por ejemplo, tienen sus propios cables separados.

Figura 5.-Sistema de cableado eléctrico de una casa.

Fusibles

Todos los circuitos eléctricos, desde los grandes circuitos de la red de distribución hasta los circuitos de los equipos electrónicos portátiles, deben estar protegidos con fusibles o con interruptores automáticos. La electricidad es muy beneficiosa para la humanidad, pero también puede ser extremadamente peligrosa. Incluso una sobrecarga moderada puede dar lugar a incendios o a desprendimiento de humos tóxicos, por lo cual es vital que se eviten estos riesgos.

Un fusible es simplemente un trozo de cable o de metal que se funde cuando lo atraviesa una corriente de intensidad más elevada que un cierto valor establecido. Cuando forma parte de un circuito, si se sobrepasa la corriente para la que está diseñado se funde, abriendo el circuito y cesando, por tanto, la corriente.

En la figura 5 se puede observar que hay un fusible principal que pertenece al «cuadro eléctrico» y que desconecta toda la instalación eléctrica de la casa de la red externa si ocurre una sobrecarga seria. Este fusible puede ser de 60 A. Cada circuito que está conectado a la caja de distribución tiene su propio fusible, pudiendo ser éste de un valor que oscila entre 5 y 30 A; este valor de intensidad de la corriente es el máximo de seguridad permitido para los cables del circuito. En la figura 6 se representan los tipos de fusibles más comunes.

El fusible que consta solamente de un hilo desnudo tiene la ventaja de que es fácil ver si está fundido o no, pero tiene el inconveniente de que se necesita un destornillador (y también algo de paciencia) para reemplazarlo. El fusible encapsulado, por otra parte, es fácil de reemplazar, pero no siempre es fácil comprobar si está fundido, aunque se encuentre el hilo en una cápsula de vidrio.

Conviene tener todos los fusibles de la instalación en un sitio común y disponer de hilo desnudo o de fusibles encapsulados en todo momento. Los coches, al igual que las casas, también tienen caja de fusibles donde cada circuito tiene el suyo. Es sorprendente comprobar que los circuitos de los coches manejan corrientes muy elevadas (el fusible principal puede ser de 55 A, y hay otros de 10 y 15 A), pero sólo tienen tensiones de 12 V (exceptuando el sistema de encendido), que son suficientes para obtener la potencia eléctrica necesaria.

Figura 6.-Tipos de fusibles.

Interruptores automáticos

En la actualidad, y sobre todo en las casas, se utilizan interruptores automáticos en vez de fusibles. Estos interruptores llevan un sistema electromagnético que les hace «saltar» cuando la corriente que pasa a través de ellos alcanza un determinado valor abriendo, por tanto, el circuito. En la caja de distribución de una casa suele haber unos seis interruptores automáticos, uno para cada circuito de la casa, cada uno con la indicación de la intensidad de corriente que es capaz de cortar y con un color (no siempre) de acuerdo a un código estandarizado. También hay un interruptor automático principal. La gran ventaja que tienen sobre los fusibles es que, una vez que se ha arreglado la avería que les ha hecho saltar, se pueden poner en su situación original pulsando un botón de control, sin tener que poner fusibles nuevos. Además, los interruptores automáticos responden más rápidamente y son más fiables en su funcionamiento, incluso cuando el valor de la intensidad de corriente está sólo un poco por encima del valor preestablecido.

En el sistema de distribución de energía eléctrica se emplean muchos interruptores automáticos, donde aparecen corrientes de intensidad mucho más elevada de la que son capaces de manejar los fusibles.

Tamaño del fusible

Es muy importante elegir el tamaño de fusible separadamente para cada aparato o sistema, de forma que esté protegido individualmente. Si se produce una avería que provoca el paso de una corriente más grande de lo normal, es mejor que se funda el fusible que lleva el propio aparato en vez de fundirse algún fusible en la caja de distribución. De esta forma, se obtiene una protección ante corrientes de una intensidad lo más baja posible.

A veces los enchufes vienen ya con un fusible incorporado (suele ser de unos 13 A), independientemente de la aplicación que vaya a tener. Hay una gama muy variada de fusibles para enchufes (3 A, 5 A, 10 A, 13 A) y el adecuado se elige de un valor un poco mayor que el valor de la intensidad de corriente que vaya a circular por el aparato o sistema que se va a enchufar. Si el valor de la corriente no está indicado en el aparato por el fabricante, se debe calcular a partir del valor de la potencia (que sí se suele indicar) y de la tensión de la red.

Temas relacionados :

 

 


 

 

 

 

Volver arriba